Brought to you by
SLGO
the St. Lawrence regional association of
CIOOS
Présenté par OGSL l'association régionale du Saint-Laurent SIOOC |
Grid DAP Data | Sub- set | Table DAP Data | Make A Graph | W M S | Source Data Files | Title | Sum- mary | FGDC, ISO, Metadata | Back- ground Info | RSS | E | Institution | Dataset ID | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
set | data | graph | files | Classification of Benthic Substrates (Data) Using Supervised and Unsupervised Machine Learning Models on the North Shore of the St. Lawrence Maritime Estuary | Données de classification de substrats benthiques générées par Intelligence Artificielle sur la rive nord de l'estuaire maritime | F I M | background |
| cidcoBenthicSubstrateAi |
Row Type | Variable Name | Attribute Name | Data Type | Value |
---|---|---|---|---|
attribute | NC_GLOBAL | cdm_data_type | String | Point |
attribute | NC_GLOBAL | comment | String | Do not use unsupervised model data for navigation purposes |
attribute | NC_GLOBAL | comment_fr | String | Ne pas utiliser à des fins de navigation et en particulier les données du modèle non supervisé |
attribute | NC_GLOBAL | contributor_institution | String | CIDCO, CIDCO, Fisheries and Oceans Canada, CIDCO, CIDCO |
attribute | NC_GLOBAL | contributor_name | String | Guillaume Labbé-Morissette, Patrick Charron-Morneau, Yanick Gendreau, Théau Leclercq, Dominic Ndeh Munang |
attribute | NC_GLOBAL | contributor_role | String | owner, distributor, collaborator, metadata custodian, collaborator |
attribute | NC_GLOBAL | Conventions | String | CF-1.10, COARDS ACDD-1.3 |
attribute | NC_GLOBAL | creator_name | String | Interdisciplinary Centre for the Development of Ocean Mapping |
attribute | NC_GLOBAL | creator_name_fr | String | Centre Interdisciplinaire de Développement en Cartographie des Océans (CIDCO) |
attribute | NC_GLOBAL | creator_type | String | institution |
attribute | NC_GLOBAL | DOI | String | https://doi.org/10.26071/ogsl-66c132fc-b150 |
attribute | NC_GLOBAL | featureType | String | Point |
attribute | NC_GLOBAL | geodeticDatum_description | String | EPSG: 26919 - NAD83 / UTM zone 19N |
attribute | NC_GLOBAL | geospatial_lat_units | String | degrees_north |
attribute | NC_GLOBAL | geospatial_lon_units | String | degrees_east |
attribute | NC_GLOBAL | geospatial_vertical_max | double | 72.048 |
attribute | NC_GLOBAL | geospatial_vertical_min | double | -1.17 |
attribute | NC_GLOBAL | geospatial_vertical_positive | String | down |
attribute | NC_GLOBAL | geospatial_vertical_units | String | m |
attribute | NC_GLOBAL | grid_mapping_epsg_code | String | EPSG:4326 |
attribute | NC_GLOBAL | grid_mapping_epsg_code_url | String | https://epsg.io/4326 |
attribute | NC_GLOBAL | grid_mapping_geographic_crs_name | String | WGS 84 |
attribute | NC_GLOBAL | grid_mapping_inverse_flattening | String | 298.2572236 |
attribute | NC_GLOBAL | grid_mapping_name | String | latitude_longitude |
attribute | NC_GLOBAL | grid_mapping_prime_meridian_name | String | Greenwich |
attribute | NC_GLOBAL | grid_mapping_semi_major_axis | String | 6378137 |
attribute | NC_GLOBAL | history | String | Data and metadata were standardized and then checked with the SLGO data validation tool. |
attribute | NC_GLOBAL | infoUrl | String | https://www.cidco.ca/ |
attribute | NC_GLOBAL | institution | String | The Interdisciplinary Centre for the Development of Ocean Mapping |
attribute | NC_GLOBAL | institution_fr | String | Centre Interdisciplinaire de Développement en Cartographie des Océans |
attribute | NC_GLOBAL | instrument | String | Multibeam echosounder, Hydrins attitude sensor, Septentrio GNSS Receiver |
attribute | NC_GLOBAL | instrument_0_description | String | MBES Reson Seabat 7125SV dual frequency (400 and 200 kHz) |
attribute | NC_GLOBAL | instrument_0_identifier | String | https://vocab.nerc.ac.uk/collection/L22/current/TOOL0772/ |
attribute | NC_GLOBAL | instrument_0_name | String | Multibeam Echosounder |
attribute | NC_GLOBAL | instrument_1_description | String | Navigation correction (roll, pitch, heading, heave) |
attribute | NC_GLOBAL | instrument_1_identifier | String | https://vocab.nerc.ac.uk/collection/L22/current/TOOL0833/ |
attribute | NC_GLOBAL | instrument_1_name | String | Hydrins attitude sensor |
attribute | NC_GLOBAL | instrument_2_description | String | GNSS (Global Navigation Satellite System) Receiver and Antenna using for positioning |
attribute | NC_GLOBAL | instrument_2_identifier | String | https://vocab.nerc.ac.uk/collection/L05/current/301/ |
attribute | NC_GLOBAL | instrument_2_name | String | Septentrio GNSS Receiver |
attribute | NC_GLOBAL | instrument_fr | String | Sondeur multifaisceaux, station inertielle Hydrins, recepteur GNSS Septentrio |
attribute | NC_GLOBAL | keywords | String | artificial intelligence, benthic substrates classification, benthic substrates mapping, supervised machine learning, unsupervised machine learning |
attribute | NC_GLOBAL | keywords_fr | String | cartographie des substrats benthiques, classification des substrats benthiques, apprentissage automatique supervisé, apprentissage automatique non supervisé, intelligence artificielle |
attribute | NC_GLOBAL | keywords_vocabulary | String | GCMD Science Keywords |
attribute | NC_GLOBAL | license | String | Creative Commons Attribution 4.0 International license CC-BY 4.0. Allows for open sharing and adaptation of the data provided that the original creator is attributed |
attribute | NC_GLOBAL | licenseUrl | String | https://creativecommons.org/licenses/by/4.0/ |
attribute | NC_GLOBAL | location | String | St Ludger |
attribute | NC_GLOBAL | marine_region | String | St. Lawrence Estuary |
attribute | NC_GLOBAL | mission_time_coverage_end | String | 2019-10-18 |
attribute | NC_GLOBAL | mission_time_coverage_start | String | 2018-10-15 |
attribute | NC_GLOBAL | platform | String | research vessel |
attribute | NC_GLOBAL | platform_vocabulary | String | https://vocab.nerc.ac.uk/collection/L06/current/ |
attribute | NC_GLOBAL | publisher_email | String | "info@ogsl.ca" |
attribute | NC_GLOBAL | publisher_name | String | St. Lawrence Global Observatory |
attribute | NC_GLOBAL | publisher_name_fr | String | Observatoire global du Saint-Laurent |
attribute | NC_GLOBAL | publisherID | String | https://ror.org/03wfagk22 |
attribute | NC_GLOBAL | related_datasets | String | https://erddap.ogsl.ca/erddap/tabledap/cidcoBenthicSubstrateAiImages.html |
attribute | NC_GLOBAL | sourceUrl | String | (local files) |
attribute | NC_GLOBAL | standard_name_nerc_vocabulary | String | The NERC Vocabulary Server (NVS) |
attribute | NC_GLOBAL | standard_name_other_vocabulary | String | dwc: Darwin Core List of Terms (v 2023-09); dcmi: Dublin Core Metadata Initiative Metadata Terms (v 2020-01) |
attribute | NC_GLOBAL | standard_name_vocabulary | String | CF Standard Name Table v79 |
attribute | NC_GLOBAL | subsetVariables | String | location, time, boosting_class_id, boosting_class, gmm_class_id, gmm_class |
attribute | NC_GLOBAL | summary | String | The substrate classification data were generated with two machine learning models: (1) A first model trained with field truth data from Fisheries and Oceans Canada and using a gradient reinforcement method. (2) A second model trained without field truth data and based on a Gaussian mixture method. The aim of generating this data is to facilitate the classification of substrates for various fields (fishing, dredging, gas and oil) via artificial intelligence, and to make it more accessible because it is less expensive from an operational point of view. |
attribute | NC_GLOBAL | summary_fr | String | Les données de classifications des substrats ont été générés avec deux modèles d'apprentissage automatique : (1) Un premier modèle entraîné avec des données de vérité terrain provenant de Pêches et Océans Canada et utilisant une méthode de renforcement du gradient. (2) Un deuxième modèle entraîné sans données de vérité terrain et s'appuyant sur une méthode de mélange gaussien. L'ambition de la génération de ces données est de faciliter la classification des substrats pour des domaines variés (la pêche, le dragage, gaz et pétrole) via l'intelligence artificielle, et la rendre plus accessible car moins couteux d'un point de vue opérationnel. |
attribute | NC_GLOBAL | title | String | Classification of Benthic Substrates (Data) Using Supervised and Unsupervised Machine Learning Models on the North Shore of the St. Lawrence Maritime Estuary | Données de classification de substrats benthiques générées par Intelligence Artificielle sur la rive nord de l'estuaire maritime |
variable | marineRegion | String | ||
attribute | marineRegion | units | String | unitless |
variable | location | String | ||
attribute | location | units | String | unitless |
variable | measurementID | String | ||
attribute | measurementID | units | String | unitless |
variable | time | double | ||
attribute | time | _CoordinateAxisType | String | Time |
attribute | time | axis | String | T |
attribute | time | ioos_category | String | Time |
attribute | time | long_name | String | Time |
attribute | time | standard_name | String | time |
attribute | time | time_origin | String | 01-JAN-1970 00:00:00 |
attribute | time | units | String | seconds since 1970-01-01T00:00:00Z |
variable | latitude | float | ||
attribute | latitude | _CoordinateAxisType | String | Lat |
attribute | latitude | axis | String | Y |
attribute | latitude | colorBarMaximum | double | 90.0 |
attribute | latitude | colorBarMinimum | double | -90.0 |
attribute | latitude | ioos_category | String | Location |
attribute | latitude | long_name | String | Latitude |
attribute | latitude | standard_name | String | latitude |
attribute | latitude | units | String | degrees_north |
variable | longitude | float | ||
attribute | longitude | _CoordinateAxisType | String | Lon |
attribute | longitude | axis | String | X |
attribute | longitude | colorBarMaximum | double | 180.0 |
attribute | longitude | colorBarMinimum | double | -180.0 |
attribute | longitude | ioos_category | String | Location |
attribute | longitude | long_name | String | Longitude |
attribute | longitude | standard_name | String | longitude |
attribute | longitude | units | String | degrees_east |
variable | depth | float | ||
attribute | depth | _CoordinateAxisType | String | Height |
attribute | depth | _CoordinateZisPositive | String | down |
attribute | depth | actual_range | float | -1.17, 72.048 |
attribute | depth | axis | String | Z |
attribute | depth | ioos_category | String | Location |
attribute | depth | long_name | String | Sea Floor Depth |
attribute | depth | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P07/current/CFV13N17/ |
attribute | depth | positive | String | down |
attribute | depth | source_name | String | sea_floor_depth_below_sea_surface |
attribute | depth | standard_name | String | depth |
attribute | depth | units | String | m |
variable | boosting_class_id | int | ||
attribute | boosting_class_id | actual_range | int | 0, 2147483647 |
attribute | boosting_class_id | description | String | Index of substrate classification according to supervised model : 0 - Block; 1 - Cobble; 2 - Gravel; 3 - Bedrock; 4 - Sand; 5 - Sandy Mud |
attribute | boosting_class_id | long_name | String | Boosting Class ID |
attribute | boosting_class_id | original_name | String | boosting class |
attribute | boosting_class_id | units | String | unitless |
variable | boosting_class | String | ||
attribute | boosting_class | units | String | unitless |
variable | gmm_class_id | int | ||
attribute | gmm_class_id | actual_range | int | 0, 2147483647 |
attribute | gmm_class_id | description | String | Index of substrate classification according to unsupervised model: 0 - Fit the most with the supervised sand class; 1 - Unknown class; 2 - Fit the most with the supervised gravel class; 3 - Unknown class; 4 - Fit the most with the supervised block class; 5 - Fit the most with the supervised cobble class; 6 - Fit the most with the supervised bedrock class |
attribute | gmm_class_id | long_name | String | GMM Class ID |
attribute | gmm_class_id | original_name | String | gmm class |
attribute | gmm_class_id | units | String | unitless |
variable | gmm_class | String | ||
attribute | gmm_class | units | String | unitless |
The information in the table above is also available in other file formats (.csv, .htmlTable, .itx, .json, .jsonlCSV1, .jsonlCSV, .jsonlKVP, .mat, .nc, .nccsv, .tsv, .xhtml) via a RESTful web service.