Brought to you by SLGO, the St. Lawrence regional association of CIOOS    

ERDDAP > info > cidcoBenthicSubstrateAi

Grid
DAP
Data
Sub-
set
Table
DAP
Data
Make
A
Graph
W
M
S
Source
Data
Files
Title Sum-
mary
FGDC,
ISO,
Metadata
Back-
ground
Info
RSS E
mail
Institution Dataset ID
   set  data   graph     files  Classification of Benthic Substrates (Data) Using Supervised and Unsupervised Machine
Learning Models on the North Shore of the St. Lawrence Maritime Estuary | Données de
classification de substrats benthiques générées par Intelligence Artificielle sur la rive nord
de l'estuaire maritime
   ?   F   I   M   background (external link) RSS Subscribe
The Interdiscipli...  ?
cidcoBenthicSubstrateAi

The Dataset's Variables and Attributes

Row Type Variable Name Attribute Name Data Type Value
attribute NC_GLOBAL cdm_data_type String Point
attribute NC_GLOBAL comment String Do not use unsupervised model data for navigation purposes
attribute NC_GLOBAL comment_fr String Ne pas utiliser à des fins de navigation et en particulier les données du modèle non supervisé
attribute NC_GLOBAL contributor_institution String CIDCO, CIDCO, Fisheries and Oceans Canada, CIDCO, CIDCO
attribute NC_GLOBAL contributor_name String Guillaume Labbé-Morissette, Patrick Charron-Morneau, Yanick Gendreau, Théau Leclercq, Dominic Ndeh Munang
attribute NC_GLOBAL contributor_role String owner, distributor, collaborator, metadata custodian, collaborator
attribute NC_GLOBAL Conventions String CF-1.10, COARDS ACDD-1.3
attribute NC_GLOBAL creator_name String Interdisciplinary Centre for the Development of Ocean Mapping
attribute NC_GLOBAL creator_name_fr String Centre Interdisciplinaire de Développement en Cartographie des Océans (CIDCO)
attribute NC_GLOBAL creator_type String institution
attribute NC_GLOBAL DOI String https://doi.org/10.26071/ogsl-66c132fc-b150 (external link)
attribute NC_GLOBAL featureType String Point
attribute NC_GLOBAL geodeticDatum_description String EPSG: 26919 - NAD83 / UTM zone 19N
attribute NC_GLOBAL geospatial_lat_units String degrees_north
attribute NC_GLOBAL geospatial_lon_units String degrees_east
attribute NC_GLOBAL geospatial_vertical_max double 72.048
attribute NC_GLOBAL geospatial_vertical_min double -1.17
attribute NC_GLOBAL geospatial_vertical_positive String down
attribute NC_GLOBAL geospatial_vertical_units String m
attribute NC_GLOBAL grid_mapping_epsg_code String EPSG:4326
attribute NC_GLOBAL grid_mapping_epsg_code_url String https://epsg.io/4326 (external link)
attribute NC_GLOBAL grid_mapping_geographic_crs_name String WGS 84
attribute NC_GLOBAL grid_mapping_inverse_flattening String 298.2572236
attribute NC_GLOBAL grid_mapping_name String latitude_longitude
attribute NC_GLOBAL grid_mapping_prime_meridian_name String Greenwich
attribute NC_GLOBAL grid_mapping_semi_major_axis String 6378137
attribute NC_GLOBAL history String Data and metadata were standardized and then checked with the SLGO data validation tool.
attribute NC_GLOBAL infoUrl String https://www.cidco.ca/ (external link)
attribute NC_GLOBAL institution String The Interdisciplinary Centre for the Development of Ocean Mapping
attribute NC_GLOBAL institution_fr String Centre Interdisciplinaire de Développement en Cartographie des Océans
attribute NC_GLOBAL instrument String Multibeam echosounder, Hydrins attitude sensor, Septentrio GNSS Receiver
attribute NC_GLOBAL instrument_0_description String MBES Reson Seabat 7125SV dual frequency (400 and 200 kHz)
attribute NC_GLOBAL instrument_0_identifier String https://vocab.nerc.ac.uk/collection/L22/current/TOOL0772/ (external link)
attribute NC_GLOBAL instrument_0_name String Multibeam Echosounder
attribute NC_GLOBAL instrument_1_description String Navigation correction (roll, pitch, heading, heave)
attribute NC_GLOBAL instrument_1_identifier String https://vocab.nerc.ac.uk/collection/L22/current/TOOL0833/ (external link)
attribute NC_GLOBAL instrument_1_name String Hydrins attitude sensor
attribute NC_GLOBAL instrument_2_description String GNSS (Global Navigation Satellite System) Receiver and Antenna using for positioning
attribute NC_GLOBAL instrument_2_identifier String https://vocab.nerc.ac.uk/collection/L05/current/301/ (external link)
attribute NC_GLOBAL instrument_2_name String Septentrio GNSS Receiver
attribute NC_GLOBAL instrument_fr String Sondeur multifaisceaux, station inertielle Hydrins, recepteur GNSS Septentrio
attribute NC_GLOBAL keywords String artificial intelligence, benthic substrates classification, benthic substrates mapping, supervised machine learning, unsupervised machine learning
attribute NC_GLOBAL keywords_fr String cartographie des substrats benthiques, classification des substrats benthiques, apprentissage automatique supervisé, apprentissage automatique non supervisé, intelligence artificielle
attribute NC_GLOBAL keywords_vocabulary String GCMD Science Keywords
attribute NC_GLOBAL license String Creative Commons Attribution 4.0 International license CC-BY 4.0. Allows for open sharing and adaptation of the data provided that the original creator is attributed
attribute NC_GLOBAL licenseUrl String https://creativecommons.org/licenses/by/4.0/ (external link)
attribute NC_GLOBAL location String St Ludger
attribute NC_GLOBAL marine_region String St. Lawrence Estuary
attribute NC_GLOBAL mission_time_coverage_end String 2019-10-18
attribute NC_GLOBAL mission_time_coverage_start String 2018-10-15
attribute NC_GLOBAL platform String research vessel
attribute NC_GLOBAL platform_vocabulary String https://vocab.nerc.ac.uk/collection/L06/current/ (external link)
attribute NC_GLOBAL publisher_email String "info@ogsl.ca"
attribute NC_GLOBAL publisher_name String St. Lawrence Global Observatory
attribute NC_GLOBAL publisher_name_fr String Observatoire global du Saint-Laurent
attribute NC_GLOBAL publisherID String https://ror.org/03wfagk22 (external link)
attribute NC_GLOBAL related_datasets String https://erddap.ogsl.ca/erddap/tabledap/cidcoBenthicSubstrateAiImages.html
attribute NC_GLOBAL sourceUrl String (local files)
attribute NC_GLOBAL standard_name_nerc_vocabulary String The NERC Vocabulary Server (NVS)
attribute NC_GLOBAL standard_name_other_vocabulary String dwc: Darwin Core List of Terms (v 2023-09); dcmi: Dublin Core Metadata Initiative Metadata Terms (v 2020-01)
attribute NC_GLOBAL standard_name_vocabulary String CF Standard Name Table v79
attribute NC_GLOBAL subsetVariables String location, time, boosting_class_id, boosting_class, gmm_class_id, gmm_class
attribute NC_GLOBAL summary String The substrate classification data were generated with two machine learning models: (1) A first model trained with field truth data from Fisheries and Oceans Canada and using a gradient reinforcement method. (2) A second model trained without field truth data and based on a Gaussian mixture method. The aim of generating this data is to facilitate the classification of substrates for various fields (fishing, dredging, gas and oil) via artificial intelligence, and to make it more accessible because it is less expensive from an operational point of view.
attribute NC_GLOBAL summary_fr String Les données de classifications des substrats ont été générés avec deux modèles d'apprentissage automatique : (1) Un premier modèle entraîné avec des données de vérité terrain provenant de Pêches et Océans Canada et utilisant une méthode de renforcement du gradient. (2) Un deuxième modèle entraîné sans données de vérité terrain et s'appuyant sur une méthode de mélange gaussien. L'ambition de la génération de ces données est de faciliter la classification des substrats pour des domaines variés (la pêche, le dragage, gaz et pétrole) via l'intelligence artificielle, et la rendre plus accessible car moins couteux d'un point de vue opérationnel.
attribute NC_GLOBAL title String Classification of Benthic Substrates (Data) Using Supervised and Unsupervised Machine Learning Models on the North Shore of the St. Lawrence Maritime Estuary | Données de classification de substrats benthiques générées par Intelligence Artificielle sur la rive nord de l'estuaire maritime
variable marineRegion   String  
attribute marineRegion units String unitless
variable location   String  
attribute location units String unitless
variable measurementID   String  
attribute measurementID units String unitless
variable time   double  
attribute time _CoordinateAxisType String Time
attribute time axis String T
attribute time ioos_category String Time
attribute time long_name String Time
attribute time standard_name String time
attribute time time_origin String 01-JAN-1970 00:00:00
attribute time units String seconds since 1970-01-01T00:00:00Z
variable latitude   float  
attribute latitude _CoordinateAxisType String Lat
attribute latitude axis String Y
attribute latitude colorBarMaximum double 90.0
attribute latitude colorBarMinimum double -90.0
attribute latitude ioos_category String Location
attribute latitude long_name String Latitude
attribute latitude standard_name String latitude
attribute latitude units String degrees_north
variable longitude   float  
attribute longitude _CoordinateAxisType String Lon
attribute longitude axis String X
attribute longitude colorBarMaximum double 180.0
attribute longitude colorBarMinimum double -180.0
attribute longitude ioos_category String Location
attribute longitude long_name String Longitude
attribute longitude standard_name String longitude
attribute longitude units String degrees_east
variable depth   float  
attribute depth _CoordinateAxisType String Height
attribute depth _CoordinateZisPositive String down
attribute depth actual_range float -1.17, 72.048
attribute depth axis String Z
attribute depth ioos_category String Location
attribute depth long_name String Sea Floor Depth
attribute depth nerc_identifier String https://vocab.nerc.ac.uk/collection/P07/current/CFV13N17/ (external link)
attribute depth positive String down
attribute depth source_name String sea_floor_depth_below_sea_surface
attribute depth standard_name String depth
attribute depth units String m
variable boosting_class_id   int  
attribute boosting_class_id actual_range int 0, 5
attribute boosting_class_id description String Index of substrate classification according to supervised model : 0 - Block; 1 - Cobble; 2 - Gravel; 3 - Bedrock; 4 - Sand; 5 - Sandy Mud
attribute boosting_class_id long_name String Boosting Class ID
attribute boosting_class_id original_name String boosting class
attribute boosting_class_id units String unitless
variable boosting_class   String  
attribute boosting_class units String unitless
variable gmm_class_id   int  
attribute gmm_class_id actual_range int 0, 6
attribute gmm_class_id description String Index of substrate classification according to unsupervised model: 0 - Fit the most with the supervised sand class; 1 - Unknown class; 2 - Fit the most with the supervised gravel class; 3 - Unknown class; 4 - Fit the most with the supervised block class; 5 - Fit the most with the supervised cobble class; 6 - Fit the most with the supervised bedrock class
attribute gmm_class_id long_name String GMM Class ID
attribute gmm_class_id original_name String gmm class
attribute gmm_class_id units String unitless
variable gmm_class   String  
attribute gmm_class units String unitless

The information in the table above is also available in other file formats (.csv, .htmlTable, .itx, .json, .jsonlCSV1, .jsonlCSV, .jsonlKVP, .mat, .nc, .nccsv, .tsv, .xhtml) via a RESTful web service.


 
ERDDAP, Version 2.24
Disclaimers | Privacy Policy | Contact